

HYDROGEN STORAGE USING COMPLEX HYDRIDES

Darlene K. Slattery, Michael D. Hampton FL Solar Energy Center, U. of Central FL

Objective

- Identify a hydrogen storage system that meets the DOE guidelines
 - Complex hydrides have the potential
 - ➤ NaAlH₄ exciting but will never have capacity
 - ➤Other complex hydrides

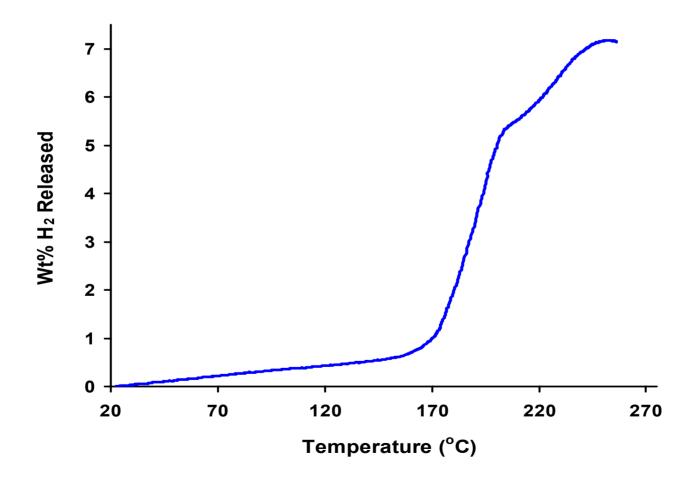
Complex Hydrides

Hydride	Wt %	Hydride	Wt%
LiAlH ₄	10.5	$Ca(BH_4)_2$	11.4
LiBH ₄	18.2	NaAlH ₄	7.5
$AI(BH_4)_3$	20.0	NaBH ₄	10.5
LiAlH ₂ (BH ₄) ₂	15.2	$Ti(BH_4)_3$	12.9
$Mg(AlH_4)_2$	9.3	$Ti(AIH_4)_4$	9.3
$Mg(BH_4)_2$	14.8	$Zr(BH_4)_3$	8.8
$Ca(AlH_4)_2$	7.7	$Fe(BH_4)_3$	11.9

Timeline - Accomplishments

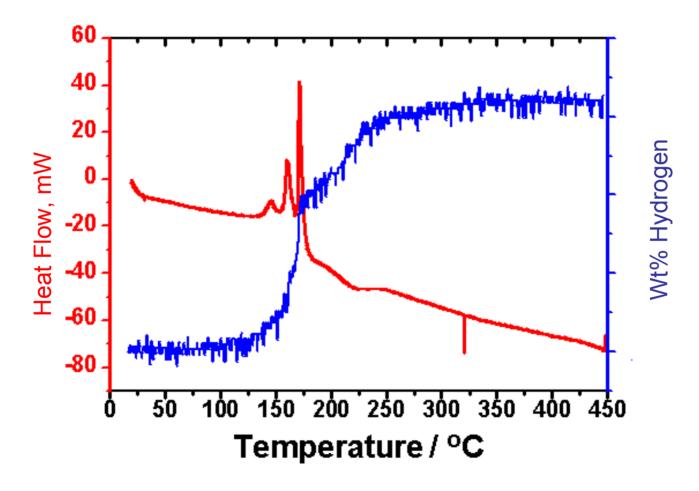
	FY 2002		2003		
Task Designation / Milestone	Qtr1	Qtr2	Qtr3	Qtr4	Qtr1
Acquire commercially available cmpds (1)					
Synthesize reported cmpds (2)		•			
Develop syntheses - unreported cmpds (3)					
Det. H interaction properties of pure (1)		•			
Det. H interaction properties of pure (2), (3)				♦	
Catalyst incorporation methods study			♦		
Determination of catalyst effects			*		
Catalyst mechanism study				*	
Propose and study other catalysts					•

Accomplishments

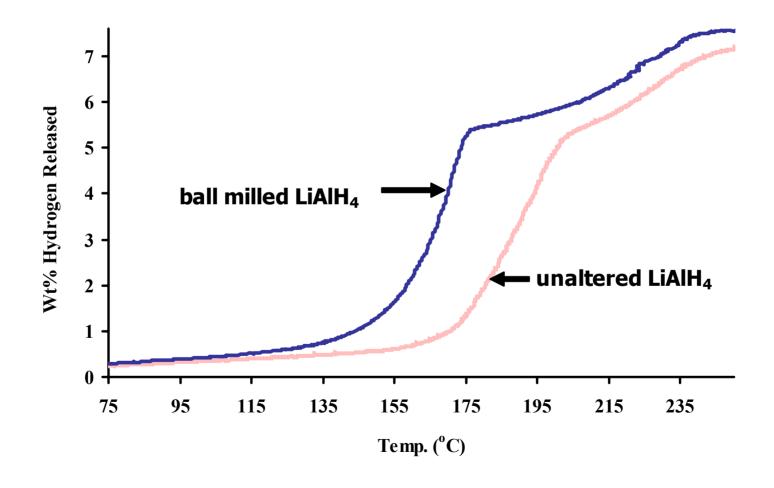


- Synthesis
 - \rightarrow Mg(AlH₄)₂
 - ➤Other cmpds via chemical and mechanical
 - \succ Ti(AlH₄)₄
- Addition of elemental Ti and other catalysts
- Ball milling as an activation method

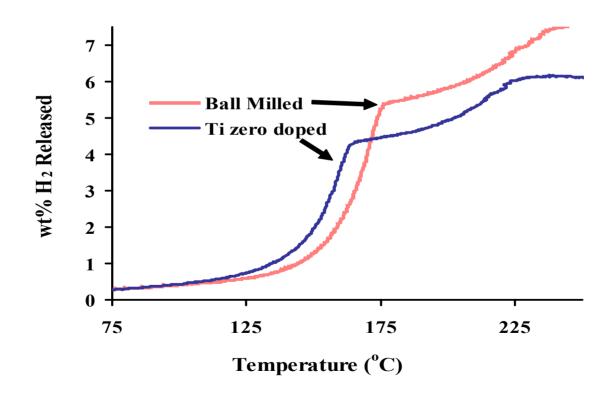
Dehydriding of LiAlH₄



DSC Thermogram of the Dehydriding of LiAlH₄

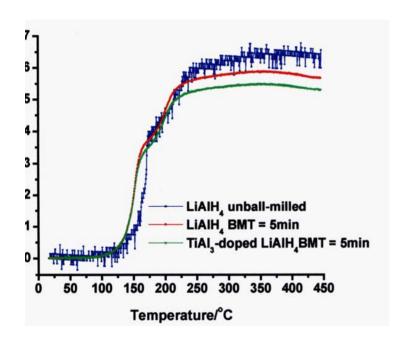


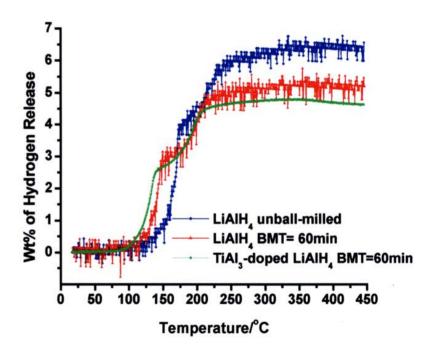
Effect of Ball Milling LiAlH₄



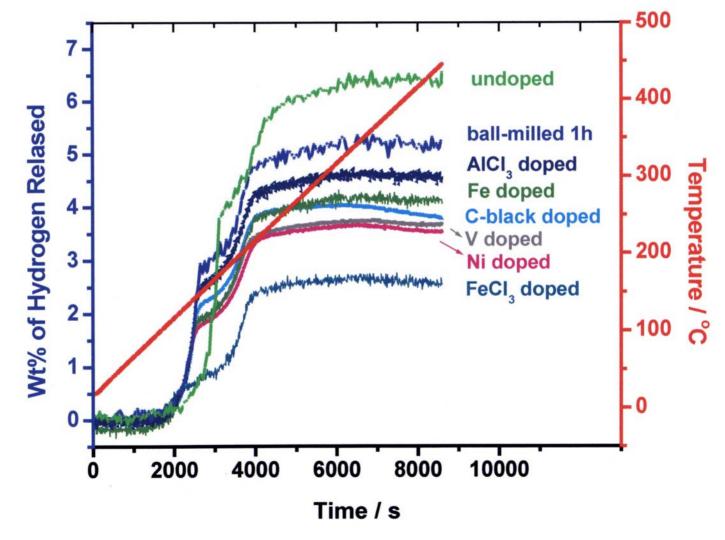
The Addition of Elemental Ti to LiAlH₄

Reversibility




- Ti catalyzed NaAlH₄
- Rehydrided at 120 °C, 45 atm.
- Second cycle,
 - ≥1st decomp step at ~ 90 °C
 - ≥2nd decomp at ~ 220 °C
- Total hydrogen released on second cycle was 4 wt%

Additional Dopants



Additional Dopants

Reviewers Concerns

"participant has warned about unstable compounds"

Sent: Tuesday, May 14, 2002 6:21 AM

After our presentation at the Hydrogen Program Review last week, you mentioned that you had had an explosion during the heating of LiAlH₄... Can you tell us anything more about what happened...

Hi Darlene,

Thanks for your concern. There was no accident. We were trying to do a burn rate test according to a UN test procedure...At the DOE Review there are usually 2-3 conversations going on at the same time. I'm sorry you thought we had an accident. Thanks again for your concern.

"....fairly broad plan."

- Narrowed scope to look at most promising materials
- Focused on experiments suggested by the research
- Limited catalyst work to using what others had already identified

Interactions & Collaborations

- Collaboration with Karl Gross Sandia
- D.K. Slattery, M.D.Hampton, J.K.Lomness, N.Najafi-Mohajeri, M. Franjic, "Hydrogen Storage Using Complex Hydrides", Fuel Chemistry Division Preprints, **2002**, 48(1), 277.
- M. Franjic, J. Lomness, J. Gilbert, M. Hampton, D. Slattery, "Effect of Ti Catalyst on Hydrogen Storage Properties of LiAlH₄", 67th Annual
 Meeting Florida Academy of Sciences, Orlando, FL, March 21–22, 2003.
- M.D. Hampton, D.K. Slattery, N. Jafafi-Mohajeri, M.Franjic, J.K. Lomness, "Complex Hydrides as Hydrogen Storage Media", Symposium P1, "Hydrogen Electrochemistry and Generating Systems", Proceedings of the 203rd Meeting of the Electrochemical Society, Paris, France, April 27 – May 2, 2003.

Goals for Continuation Project

- Complete LiAlH₄ investigation
- Synthesize 5 g quantity of Mg(AlH₄)₂
- Investigate reversibility of borohydrides

Conclusions

- LiAlH₄ exhibits an exothermic decomp.
- Ball milling LiAlH₄ changes dehydriding characteristics
- Catalyzing with elemental Ti was shown to decrease release temp and improve kinetics without significantly decreasing capacity
- NaAlH₄ catalyzed with elemental Ti was shown to be reversible

Post docs:

Janice K. Lomness, Nahid Najafi-Mohajeri

Grad student:

Mirna Franjic